Студенты Вологодского госуниверситета обучают нейросеть распознавать рак легких на ранней стадии
Инновационный проект команда студентов Института математики, естественных и компьютерных наук Вологодского госуниверситета представила на Всероссийской выставке научно-технического творчества,
Инновационный проект команда студентов Института математики, естественных и компьютерных наук Вологодского госуниверситета представила на Всероссийской выставке научно-технического творчества, которая проходит в рамках Международного форума «Молодые исследователи — регионам» в Вологде.
Студенты Павел Смирнов, Елизавета Шувалова и Сергей Смекалов проводили исследование под руководством кандидата технических наук, доцента кафедры автоматики и вычислительной техники ИМЕиКН Георгия Рапакова. Суть проекта — обучить нейросеть распознавать на снимках злокачественные новообразования, а также классифицировать рак легких.
« Инициативную разработку студенты ВоГУ собираются предложить Департаменту здравоохранения Вологодской области. Надеюсь, наш проект найдет отклик у специалистов и вместе мы сможем обсудить возможности использования нейросетевого подхода и методов искусственного интеллекта в работе учреждений здравоохранения города и области », — отметил Георгий Рапаков.
Одна из проблем, на решение которой и направлено исследование, это позднее выявление рака легких. В общей структуре заболеваемости онкологией среди населения Вологодской области рак легких составляет 10,1 %. Этот вид онкологии также составляет наибольший удельный вес в смертности населения Вологодской области — 17,4 %.
Метод распознавания рака легких, от которого отталкиваются студенты ВоГУ, — это традиционная обработка изображений нейросетью.
« Специализированные источники сети Интернет позволили собрать базу данных из 22 000 изображений, классифицированных в соответствии с требованиями Международной классификации болезней. Из них 17 тысяч снимков были использованы для обучения нейросети, а 5 тысяч — для тестирования. В результате нейронная сеть сможет распознать разные виды злокачественных новообразований и отличать здоровые легкие от пораженных заболеванием », — рассказал студент Сергей Смекалов.
« В результате сравнительного анализа мы выбрали нейросеть EfficientNet B7 как компромиссное решение с точки зрения качества распознавания, скорости обработки и аппаратных требований. Точность классификации на тестовой выборке составила от 67 до 95 %, что считается приемлемым значением для предварительного диагноза. Окончательное решение всегда остается за специалистом и может потребовать дополнительной диагностики », — считает студент Павел Смирнов.
В дальнейшем студенты планируют улучшить показатели за счет расширения набора данных и привлечения новых методов искусственного интеллекта.
Ирина БондаренкоПоследние новости
В Вологодской области решают проблемы в сфере стоматологии
На совещании в Правительстве Вологодской области глава Минздрава, Николай Гонтюрёв,

Работа вологодских стоматологий поставлена на особый контроль в областном Минздраве
Предварительный анализ проблем этой сферы и их решений озвучил на оперативном совещании в Правительстве региона министр здравоохранения Николай Гонтюрёв.
Вологодские педагоги активно пользуются мерами поддержки
Вологодские педагоги активно пользуются мерами поддержки Павел Викторович Ежов своим примером показывает, как важно оставаться верным своему призванию.
На очередной сессии будет рассмотрен отчет о развитии добровольчества
На очередной сессии будет рассмотрен отчет о развитии добровольчества Так, в прошлом году был открыт Добро.центр города Вологды.